News from Drexel University

Helping Electric Vehicles Keep Their Cool During the Battery Weight Balancing Act

Drexel researchers have created a system for optimizing battery capacity, weight and heat management demands in electric vehicles.

Packing enough energy into a battery to power a car is putting a lot of pressure on the storage devices that, for the last century or so, have mainly been tasked with running small appliances and electronics. The stress is getting to them — manifested in malfunctions, diminished performance and even meltdowns. Researchers at Drexel University are trying to help by taking some of the literal heat off batteries and plotting a more sustainable route for their use in electric vehicles.


In a recently published paper in the journal Composites Part B: Engineering, researchers led by Drexel’s Ahmad Najafi, PhD, an assistant professor in the College of Engineering, revealed a design optimization system for incorporating a blood vessel-like cooling network into the packaging of a new generation of carbon-fiber based batteries used in electric vehicles. Their method balances performance-enhancing factors, like battery capacity and conductivity, against problematic variables including weight and thermal activity, that can sap performance and cause malfunctions, to provide the best battery package specifications for any electric vehicle design.

“One of the primary hindering factors in the development of EVs, and consequently expanding their market share, is that the specific energy of batteries is low, which makes EVs heavy, especially for a long-range design,” the authors wrote.